

faculty of BUSINESS & ECONOMICS

Helpsheet Giblin Eunson Library

FUNCTION DERIVATIVES

Use this sheet to help you:

• Find derivatives using the main rules of differentiation

Rules for evaluating the derivative of a function

The process of finding a derivative is known as differentiation. The rules for differentiating speed up the process for finding the derivative enormously.

	Function	Rule	
1.	y = axn	<u>dy</u> =a nx ^{n – 1}	
	y=dx ⁿ	dx	
2 .	y = c	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
3. The chain rule			
y = f(g(x)), let g(x) = u c	$\frac{y}{x} = \frac{dy}{du}\frac{du}{dx}$	
where dy is the derivative of $y = f(u)$, and du is the du dx			
derivative of $u = g(x)$			
4	The product rule		
v = uv	where u and v are	dv = udv + vdu	
5	functions of x	$\frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dx}$ where	
		$\frac{du}{dx} and \frac{dv}{dx} are the derivatives of u dx dx and v.$	
5.	5. The quotient rule		
y = <u>u</u>	where u and v are	v du – udv	
v	functions of x	$\frac{dy}{dx} = \frac{dx}{v^2} \frac{dx}{dx}$	
Examples:			
1 (a) If $y = x^2$, we have $n = 2$, so $\frac{dy}{dx} = 2x^2 - 1 = 2x^1 = 2x$			
(b) If y	$x = x^{1/2}$, we have $n = \frac{1}{2}$	$\frac{dx}{dx} = \frac{1}{2}x^{\frac{1}{2} - 1} = \frac{1}{2}x^{-\frac{1}{2}}$	
*remember that $x^{1/2}$ is the same thing as \sqrt{x} .			
(c) If $y = x^{-2}$, we have $n = -2$, so $\frac{dy}{dx} = -2x^{-2} - 1 = -2x^{-3}$			
	*remember that x-	$\frac{2}{x^2}$ is the same thing as $\frac{1}{x^2}$, and $-2x^{-3}$ is the same as $\frac{-2}{x^3}$	
(d) If $y = 10x^3$, we have $a = 10$ and $n = 2$, $\frac{dy}{dx} = 10 \times 3x^3 - 1 = 30x^2$ $\frac{dx}{dx} = 10 \times 3x^3 - 1 = 30x^2$			
If $y = x^{2} + 6$, we have $n = 2$ and $c = 6$, so $\frac{dy}{dx} = 2x^{2} - 1 + 0 = 2x$ dx			
2 (a) If $y = (x^2 + 5x)^3$, we need to apply the chain rule, so let $u = x$ $y = u^3$, where $u = x^2 + 5x$. This gives us $\frac{dy}{du} = 3u^2$ and $\frac{du}{dx} = 2x + 5$,			
	du		

Page 1

Μ

library.unimelb.edu.au/libraries/bee

FUNCTION DERIVATIVES

so $dy = 3u^2(2x + 5)$ dx Now replace u with $x^2 + 5x$ and get $dy = 3(x^2 + 5x)^2 (2x + 5)$ dx (b) If $y = (x^2 + 1)^5$, we have $y = u^5$ where $u = x^2 + 1$. So $dy = 5u^4$ and du = 2x, therefore $dy = 5u^4(2x)$ du dx dx Now replace u with $x^2 + 1$ and get $dy = 5(x^2 + 1)^4 (2x)$ dx which simplifies to $dy = 10x(x^2 + 1)^4$ dx 3 (a) If $y = (x^2 + 1)(x^3 + x^2)$, we need to apply the product rule, $u = x^2 + 1$ and $v = x^3 + x^2$. Now we have y = u.vdu = 2x and $dv = 3x^2 + 2x$, and dx dx $dy = (u)(3x^2 + 2x) + (v)(2x)$ dx Now, replacing u with $x^2 + 1$ and v with $x^3 + x^2$, we get $dy = (x^2 + 1)(3x^2 + 2x) + (x^3 + x^2)(2x)$ dx Multiplying out the brackets and simplifying $\underline{dy} = 3x^4 + 3x^2 + 2x^3 + 2x + 2x^4 + 2x^3 = 5x^4 + 4x^3 + 3x^2 + 2x$ dx (b) If $y = (5x^2 + 3x)(x^4 + x)$, applying the product rule, we get y = u.v, where $u = 5x^2 + 3x$ and $\mathbf{v} = \mathbf{x}^4 + \mathbf{x}.$ du = 10x + 3 and $dv = 4x^3 + 1$ dx dx so dy = $(5x^2 + 3x)(4x^3 + 1) + (x^4 + x)(10x + 3)$ dx After multiplying out the brackets and simplifying we get $dy = 30x^5 + 15x^4 + 15x^2 + 6x.$ dx4 (a) If $y = x^2 + 1$ $x^3 + x^2$, we need to apply the quotient rule, where $u = x^2 + 1$ and $v = x^3 + x^2$. Now we have y = u v. Find the derivatives of u and v. du = 2x and dv = $3x^2 + 2x$ dx dx Applying the quotient rule dy = v du - u dvdx dx dx

Page 2

library.unimelb.edu.au/libraries/bee

FUNCTION DERIVATIVES

we get,
$$\frac{dy}{dx} = \frac{(x^3 + x^2)(2x) - (x^2 + 1)(3x^2 + 2x)}{(x^3 + x^2)^2}$$

multiplying out the brackets
 $\frac{dy}{dx} = \frac{2x^4 + 2x^3 - (3x^4 + 2x^3 + 3x^2 + 2x)}{x^6 + 2x^5 + x^4}$
 $= \frac{-x^4 - 3x^2 - 2x}{x^4 (x^2 + 2x + 1)}$
 $= \frac{x(-x^3 - 3x - 2)}{x^4 (x + 1)^2}$
so $\frac{dy}{dx} = -\frac{x^3 - 3x - 2}{x^3 (x + 1)^2}$

b) If
$$y = \frac{2x+1}{3x^2+3x+1}$$

We need to apply the quotient rule, as in previous example, so let u = 2x + 1 and $v = 3x^2 + 3x + 1$, so $\frac{du}{dx} = 2$ and $\frac{dv}{dx} = 6x + 3$, and $\frac{dy}{dx} = \frac{(3x^2 + 3x + 1)(2) - (2x + 1)(6x + 3)}{(3x^2 + 3x + 1)^2}$

multiplying out the brackets $\frac{dy}{dx} = \frac{6x^2 + 6x + 2 - 12x^2 - 6x - 6x - 3}{(3x^2 + 3x + 1)^2}$ $= \frac{-(6x^2 + 6x + 1)}{(3x^2 + 3x + 1)^2}$

Page 3

library.unimelb.edu.au/libraries/bee